summaryrefslogtreecommitdiff
path: root/lib.py
blob: 91553fe55a5685887404af7b797fb05d57511e32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import math
from sys import path

path.append("./taming-transformers")
from taming.models import cond_transformer, vqgan

import torch
from torch import nn
from torch.nn import functional

from omegaconf import OmegaConf
import kornia.augmentation as K


def sinc(x):
    return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))


def lanczos(x, a):
    cond = torch.logical_and(-a < x, x < a)
    out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
    return out / out.sum()


def ramp(ratio, width):
    n = math.ceil(width / ratio + 1)
    out = torch.empty([n])
    cur = 0
    for i in range(out.shape[0]):
        out[i] = cur
        cur += ratio
    return torch.cat([-out[1:].flip([0]), out])[1:-1]


def resample(input, size, align_corners=True):
    n, c, h, w = input.shape
    dh, dw = size

    input = input.view([n * c, 1, h, w])

    if dh < h:
        kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
        pad_h = (kernel_h.shape[0] - 1) // 2
        input = functional.pad(input, (0, 0, pad_h, pad_h), "reflect")
        input = functional.conv2d(input, kernel_h[None, None, :, None])

    if dw < w:
        kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
        pad_w = (kernel_w.shape[0] - 1) // 2
        input = functional.pad(input, (pad_w, pad_w, 0, 0), "reflect")
        input = functional.conv2d(input, kernel_w[None, None, None, :])

    input = input.view([n, c, h, w])
    return functional.interpolate(
        input, size, mode="bicubic", align_corners=align_corners
    )


class ReplaceGrad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x_forward, x_backward):
        ctx.shape = x_backward.shape
        return x_forward

    @staticmethod
    def backward(ctx, grad_in):
        return None, grad_in.sum_to_size(ctx.shape)


replace_grad = ReplaceGrad.apply


class ClampWithGrad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, min, max):
        ctx.min = min
        ctx.max = max
        ctx.save_for_backward(input)
        return input.clamp(min, max)

    @staticmethod
    def backward(ctx, grad_in):
        (input,) = ctx.saved_tensors
        return (
            grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
            None,
            None,
        )


clamp_with_grad = ClampWithGrad.apply


def vector_quantize(x, codebook):
    d = (
        x.pow(2).sum(dim=-1, keepdim=True)
        + codebook.pow(2).sum(dim=1)
        - 2 * x @ codebook.T
    )
    indices = d.argmin(-1)
    x_q = functional.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
    return replace_grad(x_q, x)


class Prompt(nn.Module):
    def __init__(self, embed, weight=1.0, stop=float("-inf")):
        super().__init__()
        self.register_buffer("embed", embed)
        self.register_buffer("weight", torch.as_tensor(weight))
        self.register_buffer("stop", torch.as_tensor(stop))

    def forward(self, input):
        input_normed = functional.normalize(input.unsqueeze(1), dim=2)
        embed_normed = functional.normalize(self.embed.unsqueeze(0), dim=2)
        dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
        dists = dists * self.weight.sign()
        return (
            self.weight.abs()
            * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
        )


def parse_prompt(prompt):
    vals = prompt.rsplit(":", 2)
    vals = vals + ["", "1", "-inf"][len(vals) :]
    return vals[0], float(vals[1]), float(vals[2])


class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.0):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow
        self.augs = nn.Sequential(
            K.RandomHorizontalFlip(p=0.5),
            # K.RandomSolarize(0.01, 0.01, p=0.7),
            K.RandomSharpness(0.3, p=0.4),
            K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
            K.RandomPerspective(0.2, p=0.4),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
        )
        self.noise_fac = 0.1

    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        for _ in range(self.cutn):
            size = int(
                torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
            )
            offsetx = torch.randint(0, sideX - size + 1, ())
            offsety = torch.randint(0, sideY - size + 1, ())
            cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
            cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
        batch = self.augs(torch.cat(cutouts, dim=0))
        if self.noise_fac:
            facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
            batch = batch + facs * torch.randn_like(batch)
        return batch


def load_vqgan_model(config_path, checkpoint_path):
    config = OmegaConf.load(config_path)
    if config.model.target == "taming.models.vqgan.VQModel":
        model = vqgan.VQModel(**config.model.params)
        model.eval().requires_grad_(False)
        model.init_from_ckpt(checkpoint_path)
    elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer":
        parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
        parent_model.eval().requires_grad_(False)
        parent_model.init_from_ckpt(checkpoint_path)
        model = parent_model.first_stage_model
    else:
        raise ValueError(f"unknown model type: {config.model.target}")
    del model.loss
    return model