1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddy
import (
"context"
"encoding/json"
"fmt"
"log"
"reflect"
"github.com/mholt/certmagic"
"go.uber.org/zap"
)
// Context is a type which defines the lifetime of modules that
// are loaded and provides access to the parent configuration
// that spawned the modules which are loaded. It should be used
// with care and wrapped with derivation functions from the
// standard context package only if you don't need the Caddy
// specific features. These contexts are cancelled when the
// lifetime of the modules loaded from it is over.
//
// Use NewContext() to get a valid value (but most modules will
// not actually need to do this).
type Context struct {
context.Context
moduleInstances map[string][]interface{}
cfg *Config
cleanupFuncs []func()
}
// NewContext provides a new context derived from the given
// context ctx. Normally, you will not need to call this
// function unless you are loading modules which have a
// different lifespan than the ones for the context the
// module was provisioned with. Be sure to call the cancel
// func when the context is to be cleaned up so that
// modules which are loaded will be properly unloaded.
// See standard library context package's documentation.
func NewContext(ctx Context) (Context, context.CancelFunc) {
newCtx := Context{moduleInstances: make(map[string][]interface{}), cfg: ctx.cfg}
c, cancel := context.WithCancel(ctx.Context)
wrappedCancel := func() {
cancel()
for _, f := range ctx.cleanupFuncs {
f()
}
for modName, modInstances := range newCtx.moduleInstances {
for _, inst := range modInstances {
if cu, ok := inst.(CleanerUpper); ok {
err := cu.Cleanup()
if err != nil {
log.Printf("[ERROR] %s (%p): cleanup: %v", modName, inst, err)
}
}
}
}
}
newCtx.Context = c
return newCtx, wrappedCancel
}
// OnCancel executes f when ctx is cancelled.
func (ctx *Context) OnCancel(f func()) {
ctx.cleanupFuncs = append(ctx.cleanupFuncs, f)
}
// LoadModule decodes rawMsg into a new instance of mod and
// returns the value. If mod.New() does not return a pointer
// value, it is converted to one so that it is unmarshaled
// into the underlying concrete type. If mod.New is nil, an
// error is returned. If the module implements Validator or
// Provisioner interfaces, those methods are invoked to
// ensure the module is fully configured and valid before
// being used.
func (ctx Context) LoadModule(name string, rawMsg json.RawMessage) (interface{}, error) {
modulesMu.Lock()
mod, ok := modules[name]
modulesMu.Unlock()
if !ok {
return nil, fmt.Errorf("unknown module: %s", name)
}
if mod.New == nil {
return nil, fmt.Errorf("module '%s' has no constructor", mod.Name)
}
val := mod.New().(interface{})
// value must be a pointer for unmarshaling into concrete type, even if
// the module's concrete type is a slice or map; New() *should* return
// a pointer, otherwise unmarshaling errors or panics will occur
if rv := reflect.ValueOf(val); rv.Kind() != reflect.Ptr {
log.Printf("[WARNING] ModuleInfo.New() for module '%s' did not return a pointer,"+
" so we are using reflection to make a pointer instead; please fix this by"+
" using new(Type) or &Type notation in your module's New() function.", name)
val = reflect.New(rv.Type()).Elem().Addr().Interface().(Module)
}
// fill in its config only if there is a config to fill in
if len(rawMsg) > 0 {
err := strictUnmarshalJSON(rawMsg, &val)
if err != nil {
return nil, fmt.Errorf("decoding module config: %s: %v", mod.Name, err)
}
}
if val == nil {
// returned module values are almost always type-asserted
// before being used, so a nil value would panic; and there
// is no good reason to explicitly declare null modules in
// a config; it might be because the user is trying to
// achieve a result they aren't expecting, which is a smell
return nil, fmt.Errorf("module value cannot be null")
}
if prov, ok := val.(Provisioner); ok {
err := prov.Provision(ctx)
if err != nil {
// incomplete provisioning could have left state
// dangling, so make sure it gets cleaned up
if cleanerUpper, ok := val.(CleanerUpper); ok {
err2 := cleanerUpper.Cleanup()
if err2 != nil {
err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
}
}
return nil, fmt.Errorf("provision %s: %v", mod.Name, err)
}
}
if validator, ok := val.(Validator); ok {
err := validator.Validate()
if err != nil {
// since the module was already provisioned, make sure we clean up
if cleanerUpper, ok := val.(CleanerUpper); ok {
err2 := cleanerUpper.Cleanup()
if err2 != nil {
err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
}
}
return nil, fmt.Errorf("%s: invalid configuration: %v", mod.Name, err)
}
}
ctx.moduleInstances[name] = append(ctx.moduleInstances[name], val)
return val, nil
}
// LoadModuleInline loads a module from a JSON raw message which decodes
// to a map[string]interface{}, where one of the keys is moduleNameKey
// and the corresponding value is the module name as a string, which
// can be found in the given scope.
//
// This allows modules to be decoded into their concrete types and
// used when their names cannot be the unique key in a map, such as
// when there are multiple instances in the map or it appears in an
// array (where there are no custom keys). In other words, the key
// containing the module name is treated special/separate from all
// the other keys.
func (ctx Context) LoadModuleInline(moduleNameKey, moduleScope string, raw json.RawMessage) (interface{}, error) {
moduleName, raw, err := getModuleNameInline(moduleNameKey, raw)
if err != nil {
return nil, err
}
val, err := ctx.LoadModule(moduleScope+"."+moduleName, raw)
if err != nil {
return nil, fmt.Errorf("loading module '%s': %v", moduleName, err)
}
return val, nil
}
// App returns the configured app named name. If no app with
// that name is currently configured, a new empty one will be
// instantiated. (The app module must still be registered.)
func (ctx Context) App(name string) (interface{}, error) {
if app, ok := ctx.cfg.apps[name]; ok {
return app, nil
}
modVal, err := ctx.LoadModule(name, nil)
if err != nil {
return nil, fmt.Errorf("instantiating new module %s: %v", name, err)
}
ctx.cfg.apps[name] = modVal.(App)
return modVal, nil
}
// Storage returns the configured Caddy storage implementation.
func (ctx Context) Storage() certmagic.Storage {
return ctx.cfg.storage
}
// Logger returns a logger that can be used by mod.
func (ctx Context) Logger(mod Module) *zap.Logger {
return ctx.cfg.Logging.Logger(mod)
}
|