summaryrefslogtreecommitdiff
path: root/context.go
blob: c95b08f51f7bc7ae1b63b5a5fafa3a618bcd79c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package caddy

import (
	"context"
	"encoding/json"
	"fmt"
	"log"
	"reflect"

	"github.com/mholt/certmagic"
	"go.uber.org/zap"
)

// Context is a type which defines the lifetime of modules that
// are loaded and provides access to the parent configuration
// that spawned the modules which are loaded. It should be used
// with care and wrapped with derivation functions from the
// standard context package only if you don't need the Caddy
// specific features. These contexts are cancelled when the
// lifetime of the modules loaded from it is over.
//
// Use NewContext() to get a valid value (but most modules will
// not actually need to do this).
type Context struct {
	context.Context
	moduleInstances map[string][]interface{}
	cfg             *Config
	cleanupFuncs    []func()
}

// NewContext provides a new context derived from the given
// context ctx. Normally, you will not need to call this
// function unless you are loading modules which have a
// different lifespan than the ones for the context the
// module was provisioned with. Be sure to call the cancel
// func when the context is to be cleaned up so that
// modules which are loaded will be properly unloaded.
// See standard library context package's documentation.
func NewContext(ctx Context) (Context, context.CancelFunc) {
	newCtx := Context{moduleInstances: make(map[string][]interface{}), cfg: ctx.cfg}
	c, cancel := context.WithCancel(ctx.Context)
	wrappedCancel := func() {
		cancel()

		for _, f := range ctx.cleanupFuncs {
			f()
		}

		for modName, modInstances := range newCtx.moduleInstances {
			for _, inst := range modInstances {
				if cu, ok := inst.(CleanerUpper); ok {
					err := cu.Cleanup()
					if err != nil {
						log.Printf("[ERROR] %s (%p): cleanup: %v", modName, inst, err)
					}
				}
			}
		}
	}
	newCtx.Context = c
	return newCtx, wrappedCancel
}

// OnCancel executes f when ctx is cancelled.
func (ctx *Context) OnCancel(f func()) {
	ctx.cleanupFuncs = append(ctx.cleanupFuncs, f)
}

// LoadModule loads the Caddy module(s) from the specified field of the parent struct
// pointer and returns the loaded module(s). The struct pointer and its field name as
// a string are necessary so that reflection can be used to read the struct tag on the
// field to get the module namespace and inline module name key (if specified).
//
// The field can be any one of the supported raw module types: json.RawMessage,
// []json.RawMessage, map[string]json.RawMessage, or []map[string]json.RawMessage.
// ModuleMap may be used in place of map[string]json.RawMessage. The return value's
// underlying type mirrors the input field's type:
//
//    json.RawMessage              => interface{}
//    []json.RawMessage            => []interface{}
//    map[string]json.RawMessage   => map[string]interface{}
//    []map[string]json.RawMessage => []map[string]interface{}
//
// The field must have a "caddy" struct tag in this format:
//
//    caddy:"key1=val1 key2=val2"
//
// To load modules, a "namespace" key is required. For example, to load modules
// in the "http.handlers" namespace, you'd put: `namespace=http.handlers` in the
// Caddy struct tag.
//
// The module name must also be available. If the field type is a map or slice of maps,
// then key is assumed to be the module name if an "inline_key" is NOT specified in the
// caddy struct tag. In this case, the module name does NOT need to be specified in-line
// with the module itself.
//
// If not a map, or if inline_key is non-empty, then the module name must be embedded
// into the values, which must be objects; then there must be a key in those objects
// where its associated value is the module name. This is called the "inline key",
// meaning the key containing the module's name that is defined inline with the module
// itself. You must specify the inline key in a struct tag, along with the namespace:
//
//    caddy:"namespace=http.handlers inline_key=handler"
//
// This will look for a key/value pair like `"handler": "..."` in the json.RawMessage
// in order to know the module name.
//
// To make use of the loaded module(s) (the return value), you will probably want
// to type-assert each interface{} value(s) to the types that are useful to you
// and store them on the same struct. Storing them on the same struct makes for
// easy garbage collection when your host module is no longer needed.
//
// Loaded modules have already been provisioned and validated.
func (ctx Context) LoadModule(structPointer interface{}, fieldName string) (interface{}, error) {
	val := reflect.ValueOf(structPointer).Elem().FieldByName(fieldName)
	typ := val.Type()

	field, ok := reflect.TypeOf(structPointer).Elem().FieldByName(fieldName)
	if !ok {
		panic(fmt.Sprintf("field %s does not exist in %#v", fieldName, structPointer))
	}

	opts, err := ParseStructTag(field.Tag.Get("caddy"))
	if err != nil {
		panic(fmt.Sprintf("malformed tag on field %s: %v", fieldName, err))
	}

	moduleNamespace, ok := opts["namespace"]
	if !ok {
		panic(fmt.Sprintf("missing 'namespace' key in struct tag on field %s", fieldName))
	}
	inlineModuleKey := opts["inline_key"]

	var result interface{}

	switch val.Kind() {
	case reflect.Slice:
		if isJSONRawMessage(typ) {
			// val is `json.RawMessage` ([]uint8 under the hood)

			if inlineModuleKey == "" {
				panic("unable to determine module name without inline_key when type is not a ModuleMap")
			}
			val, err := ctx.loadModuleInline(inlineModuleKey, moduleNamespace, val.Interface().(json.RawMessage))
			if err != nil {
				return nil, err
			}
			result = val

		} else if isJSONRawMessage(typ.Elem()) {
			// val is `[]json.RawMessage`

			if inlineModuleKey == "" {
				panic("unable to determine module name without inline_key because type is not a ModuleMap")
			}
			var all []interface{}
			for i := 0; i < val.Len(); i++ {
				val, err := ctx.loadModuleInline(inlineModuleKey, moduleNamespace, val.Index(i).Interface().(json.RawMessage))
				if err != nil {
					return nil, fmt.Errorf("position %d: %v", i, err)
				}
				all = append(all, val)
			}
			result = all

		} else if isModuleMapType(typ.Elem()) {
			// val is `[]map[string]json.RawMessage`

			var all []map[string]interface{}
			for i := 0; i < val.Len(); i++ {
				thisSet, err := ctx.loadModulesFromSomeMap(moduleNamespace, inlineModuleKey, val.Index(i))
				if err != nil {
					return nil, err
				}
				all = append(all, thisSet)
			}
			result = all
		}

	case reflect.Map:
		// val is a ModuleMap or some other kind of map
		result, err = ctx.loadModulesFromSomeMap(moduleNamespace, inlineModuleKey, val)
		if err != nil {
			return nil, err
		}

	default:
		return nil, fmt.Errorf("unrecognized type for module: %s", typ)
	}

	// we're done with the raw bytes; allow GC to deallocate
	val.Set(reflect.Zero(typ))

	return result, nil
}

// loadModulesFromSomeMap loads modules from val, which must be a type of map[string]interface{}.
// Depending on inlineModuleKey, it will be interpeted as either a ModuleMap (key is the module
// name) or as a regular map (key is not the module name, and module name is defined inline).
func (ctx Context) loadModulesFromSomeMap(namespace, inlineModuleKey string, val reflect.Value) (map[string]interface{}, error) {
	// if no inline_key is specified, then val must be a ModuleMap,
	// where the key is the module name
	if inlineModuleKey == "" {
		if !isModuleMapType(val.Type()) {
			panic(fmt.Sprintf("expected ModuleMap because inline_key is empty; but we do not recognize this type: %s", val.Type()))
		}
		return ctx.loadModuleMap(namespace, val)
	}

	// otherwise, val is a map with modules, but the module name is
	// inline with each value (the key means something else)
	return ctx.loadModulesFromRegularMap(namespace, inlineModuleKey, val)
}

// loadModulesFromRegularMap loads modules from val, where val is a map[string]json.RawMessage.
// Map keys are NOT interpreted as module names, so module names are still expected to appear
// inline with the objects.
func (ctx Context) loadModulesFromRegularMap(namespace, inlineModuleKey string, val reflect.Value) (map[string]interface{}, error) {
	mods := make(map[string]interface{})
	iter := val.MapRange()
	for iter.Next() {
		k := iter.Key()
		v := iter.Value()
		mod, err := ctx.loadModuleInline(inlineModuleKey, namespace, v.Interface().(json.RawMessage))
		if err != nil {
			return nil, fmt.Errorf("key %s: %v", k, err)
		}
		mods[k.String()] = mod
	}
	return mods, nil
}

// loadModuleMap loads modules from a ModuleMap, i.e. map[string]interface{}, where the key is the
// module name. With a module map, module names do not need to be defined inline with their values.
func (ctx Context) loadModuleMap(namespace string, val reflect.Value) (map[string]interface{}, error) {
	all := make(map[string]interface{})
	iter := val.MapRange()
	for iter.Next() {
		k := iter.Key().Interface().(string)
		v := iter.Value().Interface().(json.RawMessage)
		moduleName := namespace + "." + k
		if namespace == "" {
			moduleName = k
		}
		val, err := ctx.LoadModuleByID(moduleName, v)
		if err != nil {
			return nil, fmt.Errorf("module name '%s': %v", k, err)
		}
		all[k] = val
	}
	return all, nil
}

// LoadModuleByID decodes rawMsg into a new instance of mod and
// returns the value. If mod.New is nil, an error is returned.
// If the module implements Validator or Provisioner interfaces,
// those methods are invoked to ensure the module is fully
// configured and valid before being used.
//
// This is a lower-level method and will usually not be called
// directly by most modules. However, this method is useful when
// dynamically loading/unloading modules in their own context,
// like from embedded scripts, etc.
func (ctx Context) LoadModuleByID(id string, rawMsg json.RawMessage) (interface{}, error) {
	modulesMu.RLock()
	mod, ok := modules[id]
	modulesMu.RUnlock()
	if !ok {
		return nil, fmt.Errorf("unknown module: %s", id)
	}

	if mod.New == nil {
		return nil, fmt.Errorf("module '%s' has no constructor", mod.ID)
	}

	val := mod.New().(interface{})

	// value must be a pointer for unmarshaling into concrete type, even if
	// the module's concrete type is a slice or map; New() *should* return
	// a pointer, otherwise unmarshaling errors or panics will occur
	if rv := reflect.ValueOf(val); rv.Kind() != reflect.Ptr {
		log.Printf("[WARNING] ModuleInfo.New() for module '%s' did not return a pointer,"+
			" so we are using reflection to make a pointer instead; please fix this by"+
			" using new(Type) or &Type notation in your module's New() function.", id)
		val = reflect.New(rv.Type()).Elem().Addr().Interface().(Module)
	}

	// fill in its config only if there is a config to fill in
	if len(rawMsg) > 0 {
		err := strictUnmarshalJSON(rawMsg, &val)
		if err != nil {
			return nil, fmt.Errorf("decoding module config: %s: %v", mod, err)
		}
	}

	if val == nil {
		// returned module values are almost always type-asserted
		// before being used, so a nil value would panic; and there
		// is no good reason to explicitly declare null modules in
		// a config; it might be because the user is trying to achieve
		// a result the developer isn't expecting, which is a smell
		return nil, fmt.Errorf("module value cannot be null")
	}

	if prov, ok := val.(Provisioner); ok {
		err := prov.Provision(ctx)
		if err != nil {
			// incomplete provisioning could have left state
			// dangling, so make sure it gets cleaned up
			if cleanerUpper, ok := val.(CleanerUpper); ok {
				err2 := cleanerUpper.Cleanup()
				if err2 != nil {
					err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
				}
			}
			return nil, fmt.Errorf("provision %s: %v", mod, err)
		}
	}

	if validator, ok := val.(Validator); ok {
		err := validator.Validate()
		if err != nil {
			// since the module was already provisioned, make sure we clean up
			if cleanerUpper, ok := val.(CleanerUpper); ok {
				err2 := cleanerUpper.Cleanup()
				if err2 != nil {
					err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
				}
			}
			return nil, fmt.Errorf("%s: invalid configuration: %v", mod, err)
		}
	}

	ctx.moduleInstances[id] = append(ctx.moduleInstances[id], val)

	return val, nil
}

// loadModuleInline loads a module from a JSON raw message which decodes to
// a map[string]interface{}, where one of the object keys is moduleNameKey
// and the corresponding value is the module name (as a string) which can
// be found in the given scope. In other words, the module name is declared
// in-line with the module itself.
//
// This allows modules to be decoded into their concrete types and used when
// their names cannot be the unique key in a map, such as when there are
// multiple instances in the map or it appears in an array (where there are
// no custom keys). In other words, the key containing the module name is
// treated special/separate from all the other keys in the object.
func (ctx Context) loadModuleInline(moduleNameKey, moduleScope string, raw json.RawMessage) (interface{}, error) {
	moduleName, raw, err := getModuleNameInline(moduleNameKey, raw)
	if err != nil {
		return nil, err
	}

	val, err := ctx.LoadModuleByID(moduleScope+"."+moduleName, raw)
	if err != nil {
		return nil, fmt.Errorf("loading module '%s': %v", moduleName, err)
	}

	return val, nil
}

// App returns the configured app named name. If no app with
// that name is currently configured, a new empty one will be
// instantiated. (The app module must still be registered.)
func (ctx Context) App(name string) (interface{}, error) {
	if app, ok := ctx.cfg.apps[name]; ok {
		return app, nil
	}
	modVal, err := ctx.LoadModuleByID(name, nil)
	if err != nil {
		return nil, fmt.Errorf("instantiating new module %s: %v", name, err)
	}
	ctx.cfg.apps[name] = modVal.(App)
	return modVal, nil
}

// Storage returns the configured Caddy storage implementation.
func (ctx Context) Storage() certmagic.Storage {
	return ctx.cfg.storage
}

// Logger returns a logger that can be used by mod.
func (ctx Context) Logger(mod Module) *zap.Logger {
	return ctx.cfg.Logging.Logger(mod)
}