/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtx_quaternion /// @file glm/gtx/quaternion.inl /// @date 2005-12-21 / 2011-06-07 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include #include "../gtc/constants.hpp" namespace glm { template GLM_FUNC_QUALIFIER tvec3 cross ( tvec3 const & v, tquat const & q ) { return inverse(q) * v; } template GLM_FUNC_QUALIFIER tvec3 cross ( tquat const & q, tvec3 const & v ) { return q * v; } template GLM_FUNC_QUALIFIER tquat squad ( tquat const & q1, tquat const & q2, tquat const & s1, tquat const & s2, T const & h) { return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast(2) * (static_cast(1) - h) * h); } template GLM_FUNC_QUALIFIER tquat intermediate ( tquat const & prev, tquat const & curr, tquat const & next ) { tquat invQuat = inverse(curr); return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast(-4)) * curr; } template GLM_FUNC_QUALIFIER tquat exp ( tquat const & q ) { tvec3 u(q.x, q.y, q.z); T Angle = glm::length(u); if (Angle < epsilon()) return tquat(); tvec3 v(u / Angle); return tquat(cos(Angle), sin(Angle) * v); } template GLM_FUNC_QUALIFIER tquat log ( tquat const & q ) { tvec3 u(q.x, q.y, q.z); T Vec3Len = length(u); if (Vec3Len < epsilon()) { if(q.w > static_cast(0)) return tquat(log(q.w), static_cast(0), static_cast(0), static_cast(0)); else if(q.w < static_cast(0)) return tquat(log(-q.w), pi(), static_cast(0), static_cast(0)); else return tquat(std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity()); } else { T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w); T t = atan(Vec3Len, T(q.w)) / Vec3Len; return tquat(log(QuatLen), t * q.x, t * q.y, t * q.z); } } template GLM_FUNC_QUALIFIER tquat pow ( tquat const & x, T const & y ) { if(abs(x.w) > (static_cast(1) - epsilon())) return x; T Angle = acos(y); T NewAngle = Angle * y; T Div = sin(NewAngle) / sin(Angle); return tquat( cos(NewAngle), x.x * Div, x.y * Div, x.z * Div); } //template //GLM_FUNC_QUALIFIER tquat sqrt //( // tquat const & q //) //{ // T q0 = static_cast(1) - dot(q, q); // return T(2) * (T(1) + q0) * q; //} template GLM_FUNC_QUALIFIER tvec3 rotate ( tquat const & q, tvec3 const & v ) { return q * v; } template GLM_FUNC_QUALIFIER tvec4 rotate ( tquat const & q, tvec4 const & v ) { return q * v; } template GLM_FUNC_QUALIFIER T extractRealComponent ( tquat const & q ) { T w = static_cast(1) - q.x * q.x - q.y * q.y - q.z * q.z; if(w < T(0)) return T(0); else return -sqrt(w); } template GLM_FUNC_QUALIFIER T length2 ( tquat const & q ) { return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w; } template GLM_FUNC_QUALIFIER tquat shortMix ( tquat const & x, tquat const & y, T const & a ) { if(a <= static_cast(0)) return x; if(a >= static_cast(1)) return y; T fCos = dot(x, y); tquat y2(y); //BUG!!! tquat y2; if(fCos < static_cast(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem T k0, k1; if(fCos > (static_cast(1) - epsilon())) { k0 = static_cast(1) - a; k1 = static_cast(0) + a; //BUG!!! 1.0f + a; } else { T fSin = sqrt(T(1) - fCos * fCos); T fAngle = atan(fSin, fCos); T fOneOverSin = static_cast(1) / fSin; k0 = sin((static_cast(1) - a) * fAngle) * fOneOverSin; k1 = sin((static_cast(0) + a) * fAngle) * fOneOverSin; } return tquat( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template GLM_FUNC_QUALIFIER tquat fastMix ( tquat const & x, tquat const & y, T const & a ) { return glm::normalize(x * (static_cast(1) - a) + (y * a)); } template GLM_FUNC_QUALIFIER tquat rotation ( tvec3 const & orig, tvec3 const & dest ) { T cosTheta = dot(orig, dest); tvec3 rotationAxis; if(cosTheta < static_cast(-1) + epsilon()) { // special case when vectors in opposite directions : // there is no "ideal" rotation axis // So guess one; any will do as long as it's perpendicular to start // This implementation favors a rotation around the Up axis (Y), // since it's often what you want to do. rotationAxis = cross(tvec3(0, 0, 1), orig); if(length2(rotationAxis) < epsilon()) // bad luck, they were parallel, try again! rotationAxis = cross(tvec3(1, 0, 0), orig); rotationAxis = normalize(rotationAxis); return angleAxis(pi(), rotationAxis); } // Implementation from Stan Melax's Game Programming Gems 1 article rotationAxis = cross(orig, dest); T s = sqrt((T(1) + cosTheta) * static_cast(2)); T invs = static_cast(1) / s; return tquat( s * static_cast(0.5f), rotationAxis.x * invs, rotationAxis.y * invs, rotationAxis.z * invs); } }//namespace glm