// Copyright 2015 Matthew Holt and The Caddy Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package caddyfile import ( "errors" "fmt" "io" "log" "strconv" "strings" ) // Dispenser is a type that dispenses tokens, similarly to a lexer, // except that it can do so with some notion of structure. An empty // Dispenser is invalid; call NewDispenser to make a proper instance. type Dispenser struct { tokens []Token cursor int nesting int } // NewDispenser returns a Dispenser filled with the given tokens. func NewDispenser(tokens []Token) *Dispenser { return &Dispenser{ tokens: tokens, cursor: -1, } } // NewTestDispenser parses input into tokens and creates a new // Dispenser for test purposes only; any errors are fatal. func NewTestDispenser(input string) *Dispenser { tokens, err := allTokens("Testfile", []byte(input)) if err != nil && err != io.EOF { log.Fatalf("getting all tokens from input: %v", err) } return NewDispenser(tokens) } // Next loads the next token. Returns true if a token // was loaded; false otherwise. If false, all tokens // have been consumed. func (d *Dispenser) Next() bool { if d.cursor < len(d.tokens)-1 { d.cursor++ return true } return false } // Prev moves to the previous token. It does the inverse // of Next(), except this function may decrement the cursor // to -1 so that the next call to Next() points to the // first token; this allows dispensing to "start over". This // method returns true if the cursor ends up pointing to a // valid token. func (d *Dispenser) Prev() bool { if d.cursor > -1 { d.cursor-- return d.cursor > -1 } return false } // NextArg loads the next token if it is on the same // line and if it is not a block opening (open curly // brace). Returns true if an argument token was // loaded; false otherwise. If false, all tokens on // the line have been consumed except for potentially // a block opening. It handles imported tokens // correctly. func (d *Dispenser) NextArg() bool { if !d.nextOnSameLine() { return false } if d.Val() == "{" { // roll back; a block opening is not an argument d.cursor-- return false } return true } // nextOnSameLine advances the cursor if the next // token is on the same line of the same file. func (d *Dispenser) nextOnSameLine() bool { if d.cursor < 0 { d.cursor++ return true } if d.cursor >= len(d.tokens)-1 { return false } curr := d.tokens[d.cursor] next := d.tokens[d.cursor+1] if !isNextOnNewLine(curr, next) { d.cursor++ return true } return false } // NextLine loads the next token only if it is not on the same // line as the current token, and returns true if a token was // loaded; false otherwise. If false, there is not another token // or it is on the same line. It handles imported tokens correctly. func (d *Dispenser) NextLine() bool { if d.cursor < 0 { d.cursor++ return true } if d.cursor >= len(d.tokens)-1 { return false } curr := d.tokens[d.cursor] next := d.tokens[d.cursor+1] if isNextOnNewLine(curr, next) { d.cursor++ return true } return false } // NextBlock can be used as the condition of a for loop // to load the next token as long as it opens a block or // is already in a block nested more than initialNestingLevel. // In other words, a loop over NextBlock() will iterate // all tokens in the block assuming the next token is an // open curly brace, until the matching closing brace. // The open and closing brace tokens for the outer-most // block will be consumed internally and omitted from // the iteration. // // Proper use of this method looks like this: // // for nesting := d.Nesting(); d.NextBlock(nesting); { // } // // However, in simple cases where it is known that the // Dispenser is new and has not already traversed state // by a loop over NextBlock(), this will do: // // for d.NextBlock(0) { // } // // As with other token parsing logic, a loop over // NextBlock() should be contained within a loop over // Next(), as it is usually prudent to skip the initial // token. func (d *Dispenser) NextBlock(initialNestingLevel int) bool { if d.nesting > initialNestingLevel { if !d.Next() { return false // should be EOF error } if d.Val() == "}" && !d.nextOnSameLine() { d.nesting-- } else if d.Val() == "{" && !d.nextOnSameLine() { d.nesting++ } return d.nesting > initialNestingLevel } if !d.nextOnSameLine() { // block must open on same line return false } if d.Val() != "{" { d.cursor-- // roll back if not opening brace return false } d.Next() // consume open curly brace if d.Val() == "}" { return false // open and then closed right away } d.nesting++ return true } // Nesting returns the current nesting level. Necessary // if using NextBlock() func (d *Dispenser) Nesting() int { return d.nesting } // Val gets the text of the current token. If there is no token // loaded, it returns empty string. func (d *Dispenser) Val() string { if d.cursor < 0 || d.cursor >= len(d.tokens) { return "" } return d.tokens[d.cursor].Text } // ValRaw gets the raw text of the current token (including quotes). // If the token was a heredoc, then the delimiter is not included, // because that is not relevant to any unmarshaling logic at this time. // If there is no token loaded, it returns empty string. func (d *Dispenser) ValRaw() string { if d.cursor < 0 || d.cursor >= len(d.tokens) { return "" } quote := d.tokens[d.cursor].wasQuoted if quote > 0 && quote != '<' { // string literal return string(quote) + d.tokens[d.cursor].Text + string(quote) } return d.tokens[d.cursor].Text } // ScalarVal gets value of the current token, converted to the closest // scalar type. If there is no token loaded, it returns nil. func (d *Dispenser) ScalarVal() any { if d.cursor < 0 || d.cursor >= len(d.tokens) { return nil } quote := d.tokens[d.cursor].wasQuoted text := d.tokens[d.cursor].Text if quote > 0 { return text // string literal } if num, err := strconv.Atoi(text); err == nil { return num } if num, err := strconv.ParseFloat(text, 64); err == nil { return num } if bool, err := strconv.ParseBool(text); err == nil { return bool } return text } // Line gets the line number of the current token. // If there is no token loaded, it returns 0. func (d *Dispenser) Line() int { if d.cursor < 0 || d.cursor >= len(d.tokens) { return 0 } return d.tokens[d.cursor].Line } // File gets the filename where the current token originated. func (d *Dispenser) File() string { if d.cursor < 0 || d.cursor >= len(d.tokens) { return "" } return d.tokens[d.cursor].File } // Args is a convenience function that loads the next arguments // (tokens on the same line) into an arbitrary number of strings // pointed to in targets. If there are not enough argument tokens // available to fill targets, false is returned and the remaining // targets are left unchanged. If all the targets are filled, // then true is returned. func (d *Dispenser) Args(targets ...*string) bool { for i := 0; i < len(targets); i++ { if !d.NextArg() { return false } *targets[i] = d.Val() } return true } // AllArgs is like Args, but if there are more argument tokens // available than there are targets, false is returned. The // number of available argument tokens must match the number of // targets exactly to return true. func (d *Dispenser) AllArgs(targets ...*string) bool { if !d.Args(targets...) { return false } if d.NextArg() { d.Prev() return false } return true } // CountRemainingArgs counts the amount of remaining arguments // (tokens on the same line) without consuming the tokens. func (d *Dispenser) CountRemainingArgs() int { count := 0 for d.NextArg() { count++ } for i := 0; i < count; i++ { d.Prev() } return count } // RemainingArgs loads any more arguments (tokens on the same line) // into a slice and returns them. Open curly brace tokens also indicate // the end of arguments, and the curly brace is not included in // the return value nor is it loaded. func (d *Dispenser) RemainingArgs() []string { var args []string for d.NextArg() { args = append(args, d.Val()) } return args } // RemainingArgsRaw loads any more arguments (tokens on the same line, // retaining quotes) into a slice and returns them. Open curly brace // tokens also indicate the end of arguments, and the curly brace is // not included in the return value nor is it loaded. func (d *Dispenser) RemainingArgsRaw() []string { var args []string for d.NextArg() { args = append(args, d.ValRaw()) } return args } // NewFromNextSegment returns a new dispenser with a copy of // the tokens from the current token until the end of the // "directive" whether that be to the end of the line or // the end of a block that starts at the end of the line; // in other words, until the end of the segment. func (d *Dispenser) NewFromNextSegment() *Dispenser { return NewDispenser(d.NextSegment()) } // NextSegment returns a copy of the tokens from the current // token until the end of the line or block that starts at // the end of the line. func (d *Dispenser) NextSegment() Segment { tkns := Segment{d.Token()} for d.NextArg() { tkns = append(tkns, d.Token()) } var openedBlock bool for nesting := d.Nesting(); d.NextBlock(nesting); { if !openedBlock { // because NextBlock() consumes the initial open // curly brace, we rewind here to append it, since // our case is special in that we want the new // dispenser to have all the tokens including // surrounding curly braces d.Prev() tkns = append(tkns, d.Token()) d.Next() openedBlock = true } tkns = append(tkns, d.Token()) } if openedBlock { // include closing brace tkns = append(tkns, d.Token()) // do not consume the closing curly brace; the // next iteration of the enclosing loop will // call Next() and consume it } return tkns } // Token returns the current token. func (d *Dispenser) Token() Token { if d.cursor < 0 || d.cursor >= len(d.tokens) { return Token{} } return d.tokens[d.cursor] } // Reset sets d's cursor to the beginning, as // if this was a new and unused dispenser. func (d *Dispenser) Reset() { d.cursor = -1 d.nesting = 0 } // ArgErr returns an argument error, meaning that another // argument was expected but not found. In other words, // a line break or open curly brace was encountered instead of // an argument. func (d *Dispenser) ArgErr() error { if d.Val() == "{" { return d.Err("unexpected token '{', expecting argument") } return d.Errf("wrong argument count or unexpected line ending after '%s'", d.Val()) } // SyntaxErr creates a generic syntax error which explains what was // found and what was expected. func (d *Dispenser) SyntaxErr(expected string) error { msg := fmt.Sprintf("syntax error: unexpected token '%s', expecting '%s', at %s:%d import chain: ['%s']", d.Val(), expected, d.File(), d.Line(), strings.Join(d.Token().imports, "','")) return errors.New(msg) } // EOFErr returns an error indicating that the dispenser reached // the end of the input when searching for the next token. func (d *Dispenser) EOFErr() error { return d.Errf("unexpected EOF") } // Err generates a custom parse-time error with a message of msg. func (d *Dispenser) Err(msg string) error { return d.Errf(msg) } // Errf is like Err, but for formatted error messages func (d *Dispenser) Errf(format string, args ...any) error { return d.WrapErr(fmt.Errorf(format, args...)) } // WrapErr takes an existing error and adds the Caddyfile file and line number. func (d *Dispenser) WrapErr(err error) error { if len(d.Token().imports) > 0 { return fmt.Errorf("%w, at %s:%d import chain ['%s']", err, d.File(), d.Line(), strings.Join(d.Token().imports, "','")) } return fmt.Errorf("%w, at %s:%d", err, d.File(), d.Line()) } // Delete deletes the current token and returns the updated slice // of tokens. The cursor is not advanced to the next token. // Because deletion modifies the underlying slice, this method // should only be called if you have access to the original slice // of tokens and/or are using the slice of tokens outside this // Dispenser instance. If you do not re-assign the slice with the // return value of this method, inconsistencies in the token // array will become apparent (or worse, hide from you like they // did me for 3 and a half freaking hours late one night). func (d *Dispenser) Delete() []Token { if d.cursor >= 0 && d.cursor <= len(d.tokens)-1 { d.tokens = append(d.tokens[:d.cursor], d.tokens[d.cursor+1:]...) d.cursor-- } return d.tokens } // DeleteN is the same as Delete, but can delete many tokens at once. // If there aren't N tokens available to delete, none are deleted. func (d *Dispenser) DeleteN(amount int) []Token { if amount > 0 && d.cursor >= (amount-1) && d.cursor <= len(d.tokens)-1 { d.tokens = append(d.tokens[:d.cursor-(amount-1)], d.tokens[d.cursor+1:]...) d.cursor -= amount } return d.tokens } // isNewLine determines whether the current token is on a different // line (higher line number) than the previous token. It handles imported // tokens correctly. If there isn't a previous token, it returns true. func (d *Dispenser) isNewLine() bool { if d.cursor < 1 { return true } if d.cursor > len(d.tokens)-1 { return false } prev := d.tokens[d.cursor-1] curr := d.tokens[d.cursor] return isNextOnNewLine(prev, curr) } // isNextOnNewLine determines whether the current token is on a different // line (higher line number) than the next token. It handles imported // tokens correctly. If there isn't a next token, it returns true. func (d *Dispenser) isNextOnNewLine() bool { if d.cursor < 0 { return false } if d.cursor >= len(d.tokens)-1 { return true } curr := d.tokens[d.cursor] next := d.tokens[d.cursor+1] return isNextOnNewLine(curr, next) }